La fermentación alcohólica es aquel fenómeno, estrechamente ligado a la actividad vital de las levaduras presentes en el mosto y reguladas por su carga enzimática, por el cual los azúcares originariamente presentes (en particular, glucosa y fructosa) dan origen a alcohol, anhídrido carbónico y otros productos secundarios. Para interpretar bien el fenómeno, hay que verlo en el cuadro respiratorio de las levaduras como medio apto para conseguir la energía necesria para las reacciones de síntesis de los materiales plásticos (en particular partiendo de las sustancias nitrogenadas y fosforadas presentes en el mosto) necesarios para la constitución de las nuevas células de levadura que se originan en su fase de multiplicación.
En las condiciones ideales para las levaduras, como son por ejemplo las que se recurren en la industria de preparación de levaduras para panificación u otras, el nivel fuertemente oxidante obtenido por sobresaturación de oxígeno de la solución azucarada (naturalmente contiene también los citados productos nitrogenados, etc.) que contiene de partida una masa de levaduras, permite que la reacción se lleve a transformar casi completamente los azúcares en anhídrido carbónico y agua, con un enorme aumento del número de las células presentes y desarrollo próximo al teórico de las calorías obtenibles (que se utilizan por las levaduras en la citada síntesis).
En el caso del vino, en cambio, el ambiente no puede nunca alcanzar los elevados valores oxidantes citados (allí obtenidos precisamente por enérgica y continua insuflación de aire) y la reacción se detiene en una fase intermedia, es decir, en la de obtención de alcohol.
La reacción química esencial fue explicada ya hace 150 años por GAY-LUS-SAC: C2Hl206 (Glucosa) + 2C2H5OH (alcohol etílico) + 2C02 (anhídrido carbónico)
Esta reacción, aun representando la parte fundamental del fenómeno, no es completa, dado que también se forman otras sustancias, los llamados productos secundarios, por lo que para dar un balance naturalmente escueto e indicativo podemos decir que de 100 g de glucosa o de fructosa se forman sobre todo 48 g de alcohol etílico anhidro (equivalentes a 60 ml, de aquí la costumbre de aplicar el coeficiente redondeado de 0,6 al contenido de azúcares de un mosto o de un vino para expresar estos como "alcohol a desarrollar", a sumar al "desarrollado" para tener la graduación alcohólica "total"), 45 g de anhídrido carbónico (equivalentes a 23l de gas medido a 0 °C y 760 mm de presión), 2-5 g de glicerina, 0,2-0,3 g de ácido acético (en un vino sano, con óptimo desarrollo fermentativo), 0,6 g de ácido succínico, pequeñas cantidades de acetilmetilcarbinol y de 2,3 butilenglicol, un gramo de levaduras y trazas de otras sustancias más o menos interesantes para el equilibrio organoléptico del vino obtenido.
Efectuando un balance calórico, en el caso de la intensa insuflación de aire en el citado ciclo de producción de las levaduras, tendremos para cada molécula gramo de glucosa (es decir 180 g):
C6H12O6 → 6CO2 + 6H2O + 673,4 calorías
En el caso de la fermentación alcohólica, en condiciones normales tendremos en cambio un desarrollo calórico fuertemente menor dado que el alcohol etílico que en ella se obtiene en una sustancia de elevado contenido calórico potencial, que en su combustión completa daría:
2C2H5OH + 602 → 4C02 + 6H20 + 651,4 calorías
Restando este último valor calórico del indicado en la fórmula anterior tendremos un resto de 22 calorías (en la práctica redondeable a 24, puesto que el desarrollo de alcohol es inferior al valor teórico).
En teoría, por tanto, suponiendo que no existan fenómenos de dispersión térmica, un mosto que contiene 18% de azúcares y que empieza a fermentar a 20 °C alcanzaría al final del ciclo la temperatura de 20 + 24 = 44 °C.
La marcha real de la fermentación alcohólica no es tan simple y lineal como se indica en la fórmula de GAY-LUSSAC, sino que es más complejo y rico de fases intermedias con la aparición de una serie de sustancias intermedias como precursoras del alcohol y del C02 finales, una serie de estudiosos se han dedicado profundamente a la investigación de este fenómeno entre ellos citamos: PASTEUR, BUCHNER, EMBDEN, NEUBERG, MEYERHOF, PARNAS, NEEDHAM, CORI, HARDEN, YOUNG y otros.
Para adentramos un poco en algunos detalles relativos a la cadena de reacciones que se producen en el paso de los azúcares iniciales a alcohol y CO2 finales, es el momento de anticipar que tales reacciones son posibles por la intervención de más enzimas. Así, en el caso de las levaduras, está demostrado que contienen dos fracciones enzimáticas activas para tal fenómeno: una "zimasa" no dializable, y una "co-zimasa" dializable. Tanto la zimasa como la co-zimasa están constituidas por otra parte por una serie de sustancias. En este sentido tienen particular interés, algunos componentes de la co-zimasa, ante todo la co-carboxilasa (es decir, pirofosfato de la vitamina B1 (tiamina) que desarrolla la función fundamental de aceptor, donador y transportador de hidrógeno; también el adenosin-trífosfato (abreviado como ATP, transportador de radicales fosfóricos y que se transforma reversiblemente en adenosin-difosfato, ADP), hay que incluir también los iones magnesio, calcio y potasio y los fosfatos inorgánicos. También intervienen aquí otros factores enzimáticos
No hay comentarios:
Publicar un comentario